Singular Elliptic Genus of Normal Surfaces

نویسنده

  • ROBERT WAELDER
چکیده

We define the singular elliptic genus for arbitrary normal surfaces, prove that it is a birational invariant, and show that it generalizes the singular elliptic genus of Borisov and Libgober and the stringy χy genus of Batyrev and Veys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Mckay Correspondence for Normal Surfaces

We define the singular orbifold elliptic genus and E-function for all normal surfaces without strictly log-canonical singularities, and prove the analogue of the McKay correspondence in this setting. Our invariants generalize the stringy invariants defined by Willem Veys for this class of singularities. We show that the ability to define these invariants is closely linked to rigidity phenomena ...

متن کامل

Explicit Equations of Some Elliptic Modular Surfaces

We present explicit equations of semi-stable elliptic surfaces (i.e., having only type In singular fibers) which are associated to the torsion-free genus zero congruence subgroups of the modular group as classified by A. Sebbar.

متن کامل

ar X iv : m at h / 03 07 23 0 v 1 [ m at h . A G ] 1 6 Ju l 2 00 3 EXPLICIT EQUATIONS OF SOME ELLIPTIC MODULAR SURFACES

We present explicit equations of semi-stable elliptic surfaces (i.e., having only type In singular fibers) which are associated to the torsion-free genus zero congruence subgroups of the modular group as classified by A. Sebbar.

متن کامل

Torsion Sections of Elliptic Surfaces

In this article we discuss torsion sections of semistable elliptic surfaces defined over the complex field C. Recall that a semistable elliptic surface is a fibration π : X → C, where X is a smooth compact surface, C is a smooth curve, the general fiber of π is a smooth curve of genus one, and all the singular fibers of π are semistable, that is, all are of type Im in Kodaira’s notation (see [K...

متن کامل

Irregular Elliptic Surfaces of Degree 12 in the Projective Fourspace

The purpose of this paper is to give two different constructions of irregular surfaces of degree 12 in P4. These surfaces are new and of interest in the classification of smooth non-general type surfaces in P4. This classification problem is motivated by the theorem of Ellingsrud and Peskine [9] which says that the degree of smooth non-general type surfaces in P4 is bounded. Moreover the new fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008